

July 2025

LightGBM Inference
Benchmark Report

Blackcore ACE 3100-RZ Server
AMD Alveo U50 Accelerator Card

2

Contents

1 Xelera Silva .. 3

1 Test Setup ... 4

2 PCIe Access ... 5

2.1 Results .. 5

2.2 Key Findings .. 6

3 Data Transfer .. 7

3.1 Results Single Transfer .. 8

3.2 Results Parallel Transfers .. 10

3.1 Key Findings .. 12

4 Inference Software Comparison ... 13

4.1 Results Small Model ... 15

4.2 Results Big Model ... 17

4.3 Key Findings .. 19

5 Concurrent Inferences .. 20

5.1 Results Small Model ... 22

5.2 Results Big Model ... 24

5.1 Key Findings .. 26

6 Summary and Conclusions ... 27

3

1 Xelera Silva

Gradient Boosting Tree frameworks, such as XGBoost, LightGBM, and CatBoost, are widely
used in financial trading systems, ransomware and DDOS detection systems, and
recommender systems. Xelera Silva achieves best-in-class inference latency and
throughput by leveraging commercial off-the-shelf data-centre grade PCIe-based
accelerators.

The Xelera Silva software loads Machine Learning models in XGBoost, LightGBM, and
ONNXMLTools formats and executes them for inference on AMD Alveo platforms. The user
application interacts with the accelerator software via a C/C++ or Python API.

The benchmarking was conducted across the following tests:
1. PCIe Access: This test measures the latency of a single 32-bit register read from the

accelerator card by the host system. The results in this mode are primarily influenced
by the server’s PCIe architecture and the specific slot configuration used.

2. Data Transfer: This benchmark evaluates the latency of multiple data transfer sizes to
and from the accelerator card, comparing single-process and multi-process scenarios
to assess the impact of concurrent access.

3. Inference Software Comparison: This test measures the end-to-end latency of running
inference using Gradient Boosting Tree models. It provides a performance comparison
between a standard CPU-based implementation and the Xelera Silva solution running
on the accelerator. Benchmarks were conducted using a single model to assess baseline
inference performance.

4. Concurrent Inferences: This test evaluates the end-to-end latency of Gradient Boosting
Tree model inference under concurrent execution conditions. It compares multi-model
scenarios to assess Xelera Silva impact of parallel inference workloads running on the
accelerator.

These results offer insight into the performance characteristics of Xelera Silva software.

4

1 Test Setup

This document presents latency benchmark results for the Xelera Silva software executed
on a Blackcore ACE 3100-RZ server equipped with an AMD Alveo U50 PCIe-based
accelerator card. Table 1 shows the system specification.
The measured latency reflects the combined duration of data transfer between the host
and accelerator, as well as the computation time on the accelerator itself.

Table 1 System under test

Server ACE 3100-RZ
CPU: AMD Ryzen 9950X
CPU Frequency: 16 Cores @ 5.4GHz (SSE)
CPU Cache: 64MB
Memory: 4x 32GB DDR5 ECC UDIMM

OS Linux Rocky 9.4

PCIe interface Gen4 x8

AMD Alveo Card U50 with Xelera PCIe ULL shell 1.2.0.0
Driver Xelera PCIe ULL 2.13.5 or pcie-lat for PCIe Access test only

ML Inference Software Xelera Silva 7.13.0 or pcie-lat for PCIe Access test only

https://blackcoretech.com/ace-3100-rz
https://www.xilinx.com/products/boards-and-kits/alveo/u50.html

5

2 PCIe Access

The PCIe access latency has been measured with the open-source tool pcie-lat.
The latencies are measured by calculating the time taken to read a 32-bit word from a PCIe
device using a Linux kernel module.

The process is pinned to CPU core 1, which has also been isolated. The test is conducted
1,000,000 times.

2.1 Results

Figure 1 displays the latency statistics for reading a 32-bit word from a PCIe device. The y-axis
represents the fraction of inference measurements that fall below a specified latency on the
x-axis.

Figure 1: Latency statistic 32-bit word read form PCIe device

https://github.com/andre-richter/pcie-lat

6

Table 2 compares the minimum, maximum, median (50th percentile) and the 99th percentile
latency (in microseconds) of the graphs above.

Table 2 Latency statistics 32-bit word PCIe read (microseconds)

Minimum Maximum 50th percentile 99th percentile
0.527 0.557 0.537 0.547

2.2 Key Findings

The benchmark demonstrates a highly stable server configuration, with minimal variation in
PCIe access latency—showing a maximum difference of only 30 nanoseconds between the
minimum and maximum measurements. This test is also effective for identifying the PCIe slot
with the lowest latency, which is typically the one with lanes directly connected to the CPU.

7

3 Data Transfer

This benchmark evaluates the latency of data transfers of various sizes between the host
system and the accelerator card.

Each data packet is transmitted to the accelerator, internally looped back, and returned to the
host, with roundtrip latency measured at the API interface (Tout – Tin) to capture the full
transfer cycle. Packet sizes tested include 16, 32, 64, 128, 256, 512, and 1024 bytes.

Two test configurations are employed (Figure 2): the first involves single-core execution to
assess latency across multiple packet sizes; the second performs four concurrent,
asynchronous transfers using 1024-byte packets.

Figure 2 Data transfer test configuration

To ensure consistent and reliable measurements, each process is pinned to an isolated CPU
core (cores 1 through 4). All tests are repeated 1,000,000 times to ensure statistical robustness.

8

3.1 Results Single Transfer

Figure 3 shows the latency statistics of single data transfer for multiple packet sizes using only
CPU core 1. The graphs show the fraction of inference measurements (y-axis) below a specified
latency (x-axis).

Figure 3 Latency statistic single transfer

9

Table 3 compares the minimum, maximum, median (50th percentile) and the 99th percentile
latency (microseconds) of the graphs above.

Table 3 Latency statistics single transfer (microseconds)

Data Packet Size (Bytes) Minimum Maximum 50th percentile 99th percentile

16 0.830 4.240 0.910 1.100

32 0.830 4.230 0.920 1.130

64 0.830 4.220 0.880 1.020
128 0.850 4.230 0.930 1.050
256 0.860 4.240 0.940 1.180
512 0.910 4.300 0.980 1.130

1024 1.000 4.370 1.040 1.270

10

3.2 Results Parallel Transfers

Figure 4 shows the latency statistics of four concurrent, asynchronous data transfers using
1024-byte packets on CPU cores 1-4. The graphs show the fraction of inference measurements
(y-axis) below a specified latency (x-axis).

Figure 4 Latency statistic multiple transfers

11

Table 4 compares the minimum, maximum, median (50th percentile) and the 99th percentile
latency (microseconds) of the graphs above.

Table 4 Latency Statistics Parallel Transfers (microseconds)

Data Transfer ID Minimum Maximum 50th percentile 99th percentile

0 1.000 4.560 1.110 1.290

1 1.000 4.490 1.100 1.310

2 1.010 4.410 1.110 1.290
3 0.990 4.410 1.100 1.310

12

3.1 Key Findings

The data transfer benchmarks demonstrate that Xelera Silva maintains consistently low
latency across a wide range of packet sizes and concurrent access scenarios.
For single-process transfers, median latency remained under 1.05 microseconds for all tested
packet sizes up to 1024 bytes, with the 99th percentile never exceeding 1.27 microseconds.
In the concurrent test—where four 1024-byte transfers were executed asynchronously on
isolated CPU cores—the median latency ranged from 1.10 to 1.11 microseconds, and
the 99th percentile remained below 1.32 microseconds across all processes.
These results confirm that the system handles both single and multi-process data transfers
with minimal variability, making it highly suitable for real-time applications that
demand predictable, low-latency communication between the host and accelerator.

13

4 Inference Software Comparison

The Xelera Silva software was compared against other software frameworks for the
acceleration of Gradient Boosting Tree Machine Learning models. The compared software
frameworks are listed in Table 5 below.

Table 5: Compared software frameworks

ML Inference Software Version Description
Intel oneDAL 2024.5.0 Intel CPU-optimized ML inference software

Xelera Silva 7.13.0 FPGA-accelerated ML inference software

Xelera Silva is the only FPGA-accelerated ML inference software in this comparison. Intel
oneDAL framework uses only CPU optimizations to accelerate the inference of gradient
boosting models, such as the use of vector extension instructions, branch prediction and
integer comparisons.

The roundtrip latency at the API interface (Tout – Tin) is measured when running the inference
for a small model configuration (Table 6) and a big model configuration (Table 7).

14

Table 6: Small model configuration

Model Type LightGBM regression

Dataset Synthetic Random

Number of Features 64

Number of Trees 200

Number of Levels 5
Batch Size 1

Numerical Features Yes

Categorical Features No

Table 7: Big model configuration

Model Type LightGBM regression

Dataset Synthetic Random

Number of Features 128
Number of Trees 1000

Number of Levels 8

Batch Size 1

Numerical Features Yes
Categorical Features No

For each software framework configuration, the test involves running inference on the two
models. The process is pinned to CPU core 1, which has also been isolated. The test is
conducted 1,000,000 times.

15

4.1 Results Small Model

Figure 5 shows the latency statistics of Xelera Silva in comparison to the third-party software
frameworks when running the small model (Table 6). The graphs show the fraction of inference
measurements (y-axis) below a specified latency (x-axis).

Figure 5 Latency statistic small model

16

Table 8 compares the minimum, maximum, median (50th percentile) and the 99th percentile
latency (microseconds) of the graphs above.

Table 8: Latency statistics small model (microseconds)

ML Inference Software Minimum Maximum 50th percentile 99th percentile

Intel oneDAL 4.960 19.781 5.110 5.410

Xelera Silva 1.110 4.550 1.190 1.450

17

4.2 Results Big Model

Figure 6 shows the latency statistics of Xelera Silva in comparison to the third-party software
frameworks when running the small model (Table 7). The graphs show the fraction of inference
measurements (y-axis) below a specified latency (x-axis).

Figure 6 Latency statistics big model

18

Table 9 compares the minimum, maximum, median (50th percentile) and the 99th percentile
latency (microseconds) of the graphs above.

Table 9: Latency statistics big model (microseconds)

ML Inference Software Minimum Maximum 50th percentile 99th percentile

Intel oneDAL 50.291 199.412 56.250 59.361

Xelera Silva 1.230 4.670 1.310 1.570

19

4.3 Key Findings

The benchmark results demonstrate that Xelera Silva delivers a significant performance
advantage over Intel oneDAL across both small and large LightGBM model configurations.
In particular, Xelera Silva achieves up to 44 times lower median inference latency on large
models, with just 1.31 microseconds compared to 56.25 microseconds for Intel oneDAL.
Moreover, while Intel oneDAL shows a maximum latency of nearly 200 microseconds, this
upper bound can be prohibitive in high-frequency applications such as trading or real-time
detection systems, where strict latency ceilings are critical. In contrast, Xelera Silva not only
delivers faster inference but also maintains very stable latency characteristics, with minimal
variance even at the 99th percentile—making it highly suitable for deterministic, ultra-low-
latency environments.

20

5 Concurrent Inferences

In this benchmark, 4 models are executed simultaneously on the FPGA accelerator. Each model
is accessed by the host software via an individual process. The processes are pinned to CPU
core 1, 2, 3, 4 respectively. These cores have also been isolated. The test is conducted
1,000,000 times.

The roundtrip latency at the API interface (Toutx – Tinx) is measured when running the
inference for a small model configuration (Table 10) and a big model configuration (Table 11).

21

Table 10: Small model configuration

Model Type LightGBM regression

Dataset Synthetic Random

Number of Features 64

Number of Trees 200
Number of Levels 5

Batch Size 1

Numerical Features Yes

Categorical Features No

Table 11: Big model configuration

Model Type LightGBM regression

Dataset Synthetic Random

Number of Features 128

Number of Trees 1000

Number of Levels 8

Batch Size 1

Numerical Features Yes
Categorical Features No

For each model configuration, the test involves running inference with four models (IDs from
0 to 3) simultaneously in an asynchronous mode (independent processes accessing the
models). Each process is pinned to a CPU core (0 to 3). The test is conducted 1,000,000 times.

22

5.1 Results Small Model

Figure 7Figure 7: Latency statistic multi-model shows the latency statistics of Xelera Silva when
running inference with 4 small models at the same time. The graphs show the fraction of
inference measurements (y-axis) below a specified latency (x-axis) for each of the 4 concurrent
model inferences.

Figure 7: Latency statistic multi-model (small)

23

Table 12 Table 12 : Latency statistics small modelcompares the minimum, maximum, median
(50th percentile) and the 99th percentile latency (microseconds) of the graphs above.

Table 12 : Latency statistics small model (microseconds)

Model ID Minimum Maximum 50th percentile 99th percentile

0 1.080 5.040 1.130 1.340

1 1.100 4.570 1.210 1.450

2 1.100 4.580 1.200 1.420

3 1.090 4.650 1.200 1.440

24

5.2 Results Big Model

Figure 8 shows the latency statistics of Xelera Silva when running inference with 4 big models
at the same time. The graphs show the fraction of inference measurements (y-axis) below a
specified latency (x-axis) for each of the 4 concurrent model inferences.

Figure 8: Latency statistic multi-model (big)

25

Table 13 compares the minimum, maximum, median (50th percentile) and the 99th percentile
latency (microseconds) of the graphs above.

Table 13 : Latency statistics big model (microseconds)

Model ID Minimum Maximum 50th percentile 99th percentile

0 1.210 4.770 1.260 1.450

1 1.220 4.700 1.320 1.530

2 1.240 4.760 1.340 1.560

3 1.220 4.770 1.320 1.530

26

5.1 Key Findings

The concurrent inference benchmarks show that Xelera Silva maintains ultra-low and highly
consistent latency even when running four models simultaneously in an asynchronous, multi-
process setup. For both small and large model configurations, the median latency across all
models remains below 1.35 microseconds, and the 99th percentile stays under 1.6
microseconds, demonstrating minimal performance degradation under parallel workloads.
Notably, when compared to single model execution, where the 99th percentile latency
was 1.450 µs for the small model and 1.570 µs for the big model, the concurrent inference
results remain remarkably close: 1.340–1.450 µs for small models and 1.450–1.560 µs for big
models. This shows that even under fully parallel and asynchronous execution, Xelera Silva
maintains virtually the same tail latency as in isolated scenarios, highlighting its excellent
scalability and resource efficiency. Additionally, the maximum observed latencies remain
well below 5 microseconds, reinforcing the platform’s ability to deliver scalable, deterministic
performance. These results confirm Xelera Silva’s suitability for real-time, high-frequency
applications where predictable latency across concurrent inference tasks is critical.

27

6 Summary and Conclusions

This benchmark report evaluates the performance of the Xelera Silva machine learning
inference software running on the Blackcore ACE 3100-RZ server equipped with an AMD Alveo
U50 accelerator card.
The evaluation encompasses a comprehensive set of tests, including PCIe access latency, data
transfer performance, inference latency comparison, and concurrent inference scalability.

The results demonstrate that the combined Xelera Silva and Alveo U50 platform delivers
exceptional performance across all test categories:

• PCIe Access Latency: Ultra-stable latencies with minimal jitter (only 30 nanoseconds
between min and max) confirm a highly optimized PCIe topology, critical for consistent
low-latency operation.

• Data Transfer Performance: Single and multi-process data transfers maintained sub-
1.3 microsecond 99th percentile latency across all packet sizes tested, demonstrating
efficient and predictable host-to-accelerator communication.

• Inference Acceleration: Xelera Silva outperformed Intel oneDAL by up to 44x in median
inference latency. For large LightGBM models, median latency was reduced from 56.25
µs (CPU) to just 1.31 µs (FPGA), while significantly narrowing the variance (99th
percentile remained under 1.6 µs).

• Concurrent Inference Scalability: Even under four fully parallel inference streams,
latency remained consistently low and tightly bounded, with virtually no degradation
compared to single-model execution. This highlights the solution’s excellent scalability
and suitability for high-throughput, real-time workloads.

Xelera Silva is well-suited for real-time systems with stringent latency and consistency
requirements, including financial trading, cyber defense, and high-frequency industrial
applications. Its ability to scale to multiple parallel inferences without impacting tail latency
further underscores its architectural efficiency and production-readiness for mission-critical
deployments.

	1 Xelera Silva
	1 Test Setup
	2 PCIe Access
	2.1 Results
	2.2 Key Findings

	3 Data Transfer
	3.1 Results Single Transfer
	3.2 Results Parallel Transfers
	3.1 Key Findings

	4 Inference Software Comparison
	4.1 Results Small Model
	4.2 Results Big Model
	4.3 Key Findings

	5 Concurrent Inferences
	5.1 Results Small Model
	5.2 Results Big Model
	5.1 Key Findings

	6 Summary and Conclusions

