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1 Xelera Silva 

Gradient Boosting Tree frameworks, such as XGBoost, LightGBM, and CatBoost, are widely 
used in financial trading systems, ransomware and DDOS detection systems, and 
recommender systems. Xelera Silva achieves best-in-class inference latency and 
throughput by leveraging commercial off-the-shelf data-centre grade PCIe-based 
accelerators. 
 
The Xelera Silva software loads Machine Learning models in XGBoost, LightGBM, and 
ONNXMLTools formats and executes them for inference on AMD Alveo platforms. The user 
application interacts with the accelerator software via a C/C++ or Python API. 
 
The benchmarking was conducted across the following tests: 
1. PCIe Access: This test measures the latency of a single 32-bit register read from the 

accelerator card by the host system. The results in this mode are primarily influenced 
by the server’s PCIe architecture and the specific slot configuration used. 

2. Data Transfer: This benchmark evaluates the latency of multiple data transfer sizes to 
and from the accelerator card, comparing single-process and multi-process scenarios 
to assess the impact of concurrent access. 

3. Inference Software Comparison: This test measures the end-to-end latency of running 
inference using Gradient Boosting Tree models. It provides a performance comparison 
between a standard CPU-based implementation and the Xelera Silva solution running 
on the accelerator. Benchmarks were conducted using a single model to assess baseline 
inference performance. 

4. Concurrent Inferences: This test evaluates the end-to-end latency of Gradient Boosting 
Tree model inference under concurrent execution conditions. It compares multi-model 
scenarios to assess Xelera Silva impact of parallel inference workloads running on the 
accelerator. 

These results offer insight into the performance characteristics of Xelera Silva software. 
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1 Test Setup 

This document presents latency benchmark results for the Xelera Silva software executed 
on a Blackcore ACE 3100-RZ server equipped with an AMD Alveo U50 PCIe-based 
accelerator card. Table 1 shows the system specification. 
The measured latency reflects the combined duration of data transfer between the host 
and accelerator, as well as the computation time on the accelerator itself. 
 

Table 1 System under test 

Server ACE 3100-RZ 
CPU: AMD Ryzen 9950X 
CPU Frequency: 16 Cores @ 5.4GHz (SSE) 
CPU Cache: 64MB 
Memory: 4x 32GB DDR5 ECC UDIMM 

OS Linux Rocky 9.4 

PCIe interface Gen4 x8 

AMD Alveo Card U50 with Xelera PCIe ULL shell 1.2.0.0 
Driver Xelera PCIe ULL 2.13.5 or pcie-lat for PCIe Access test only 

ML Inference Software Xelera Silva 7.13.0 or pcie-lat for PCIe Access test only 

 
 

  

https://blackcoretech.com/ace-3100-rz
https://www.xilinx.com/products/boards-and-kits/alveo/u50.html
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2 PCIe Access 

The PCIe access latency has been measured with the open-source tool pcie-lat. 
The latencies are measured by calculating the time taken to read a 32-bit word from a PCIe 
device using a Linux kernel module. 
 
The process is pinned to CPU core 1, which has also been isolated. The test is conducted 
1,000,000 times. 
 

2.1 Results 

Figure 1 displays the latency statistics for reading a 32-bit word from a PCIe device. The y-axis 
represents the fraction of inference measurements that fall below a specified latency on the 
x-axis. 

 

Figure 1: Latency statistic 32-bit word read form PCIe device 

https://github.com/andre-richter/pcie-lat
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Table 2 compares the minimum, maximum, median (50th percentile) and the 99th percentile 
latency (in microseconds) of the graphs above. 
 

Table 2 Latency statistics 32-bit word PCIe read (microseconds) 

Minimum Maximum 50th percentile 99th percentile 
0.527 0.557 0.537 0.547 

 
 

2.2 Key Findings 

The benchmark demonstrates a highly stable server configuration, with minimal variation in 
PCIe access latency—showing a maximum difference of only 30 nanoseconds between the 
minimum and maximum measurements. This test is also effective for identifying the PCIe slot 
with the lowest latency, which is typically the one with lanes directly connected to the CPU. 
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3 Data Transfer 

This benchmark evaluates the latency of data transfers of various sizes between the host 
system and the accelerator card.  
 
Each data packet is transmitted to the accelerator, internally looped back, and returned to the 
host, with roundtrip latency measured at the API interface (Tout – Tin) to capture the full 
transfer cycle. Packet sizes tested include 16, 32, 64, 128, 256, 512, and 1024 bytes. 
 
Two test configurations are employed (Figure 2): the first involves single-core execution to 
assess latency across multiple packet sizes; the second performs four concurrent, 
asynchronous transfers using 1024-byte packets. 
 

 
Figure 2 Data transfer test configuration 

 
To ensure consistent and reliable measurements, each process is pinned to an isolated CPU 
core (cores 1 through 4). All tests are repeated 1,000,000 times to ensure statistical robustness. 
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3.1 Results Single Transfer 

Figure 3 shows the latency statistics of single data transfer for multiple packet sizes using only 
CPU core 1. The graphs show the fraction of inference measurements (y-axis) below a specified 
latency (x-axis). 

 
 

 
Figure 3 Latency statistic single transfer 
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Table 3 compares the minimum, maximum, median (50th percentile) and the 99th percentile 
latency (microseconds) of the graphs above. 

 
Table 3 Latency statistics single transfer (microseconds) 

Data Packet Size (Bytes) Minimum Maximum 50th percentile 99th percentile 

16 0.830 4.240 0.910 1.100 

32 0.830 4.230 0.920 1.130 

64 0.830 4.220 0.880 1.020 
128 0.850 4.230 0.930 1.050 
256 0.860 4.240 0.940 1.180 
512 0.910 4.300 0.980 1.130 

1024 1.000 4.370 1.040 1.270 
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3.2 Results Parallel Transfers 

Figure 4 shows the latency statistics of four concurrent, asynchronous data transfers using 
1024-byte packets on CPU cores 1-4. The graphs show the fraction of inference measurements 
(y-axis) below a specified latency (x-axis). 
 
 

 
Figure 4 Latency statistic multiple transfers 
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Table 4 compares the minimum, maximum, median (50th percentile) and the 99th percentile 
latency (microseconds) of the graphs above. 

 
Table 4 Latency Statistics Parallel Transfers (microseconds) 

Data Transfer ID Minimum Maximum 50th percentile 99th percentile 

0 1.000 4.560 1.110 1.290 

1 1.000 4.490 1.100 1.310 

2 1.010 4.410 1.110 1.290 
3 0.990 4.410 1.100 1.310 
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3.1 Key Findings 

The data transfer benchmarks demonstrate that Xelera Silva maintains consistently low 
latency across a wide range of packet sizes and concurrent access scenarios.  
For single-process transfers, median latency remained under 1.05 microseconds for all tested 
packet sizes up to 1024 bytes, with the 99th percentile never exceeding 1.27 microseconds.  
In the concurrent test—where four 1024-byte transfers were executed asynchronously on 
isolated CPU cores—the median latency ranged from 1.10 to 1.11 microseconds, and 
the 99th percentile remained below 1.32 microseconds across all processes.  
These results confirm that the system handles both single and multi-process data transfers 
with minimal variability, making it highly suitable for real-time applications that 
demand predictable, low-latency communication between the host and accelerator.  
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4 Inference Software Comparison 

The Xelera Silva software was compared against other software frameworks for the 
acceleration of Gradient Boosting Tree Machine Learning models. The compared software 
frameworks are listed in Table 5 below. 
 
Table 5: Compared software frameworks 

ML Inference Software Version Description 
Intel oneDAL 2024.5.0 Intel CPU-optimized ML inference software 

Xelera Silva 7.13.0 FPGA-accelerated ML inference software 

 
Xelera Silva is the only FPGA-accelerated ML inference software in this comparison. Intel 
oneDAL framework uses only CPU optimizations to accelerate the inference of gradient 
boosting models, such as the use of vector extension instructions, branch prediction and 
integer comparisons. 

 
The roundtrip latency at the API interface (Tout – Tin) is measured when running the inference 
for a small model configuration (Table 6) and a big model configuration (Table 7). 
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Table 6: Small model configuration 

Model Type  LightGBM regression 

Dataset  Synthetic Random 

Number of Features 64 

Number of Trees 200 

Number of Levels 5 
Batch Size 1 

Numerical Features Yes 

Categorical Features  No 
 

Table 7: Big model configuration 

Model Type  LightGBM regression 

Dataset  Synthetic Random 

Number of Features 128 
Number of Trees 1000 

Number of Levels 8 

Batch Size 1 

Numerical Features Yes 
Categorical Features  No 

 
For each software framework configuration, the test involves running inference on the two 
models. The process is pinned to CPU core 1, which has also been isolated. The test is 
conducted 1,000,000 times. 
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4.1 Results Small Model 

Figure 5 shows the latency statistics of Xelera Silva in comparison to the third-party software 
frameworks when running the small model (Table 6). The graphs show the fraction of inference 
measurements (y-axis) below a specified latency (x-axis). 
 

 
Figure 5 Latency statistic small model 
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Table 8 compares the minimum, maximum, median (50th percentile) and the 99th percentile 
latency (microseconds) of the graphs above. 
 

Table 8: Latency statistics small model (microseconds) 

ML Inference Software Minimum Maximum 50th percentile 99th percentile 

Intel oneDAL 4.960 19.781 5.110 5.410 

Xelera Silva 1.110 4.550 1.190 1.450 
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4.2 Results Big Model 

Figure 6 shows the latency statistics of Xelera Silva in comparison to the third-party software 
frameworks when running the small model (Table 7). The graphs show the fraction of inference 
measurements (y-axis) below a specified latency (x-axis). 
 

 
Figure 6 Latency statistics big model 
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Table 9 compares the minimum, maximum, median (50th percentile) and the 99th percentile 
latency (microseconds) of the graphs above. 

 
Table 9: Latency statistics big model (microseconds) 

ML Inference Software Minimum Maximum 50th percentile 99th percentile 

Intel oneDAL 50.291 199.412 56.250 59.361 

Xelera Silva 1.230 4.670 1.310 1.570 
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4.3 Key Findings 

The benchmark results demonstrate that Xelera Silva delivers a significant performance 
advantage over Intel oneDAL across both small and large LightGBM model configurations.  
In particular, Xelera Silva achieves up to 44 times lower median inference latency on large 
models, with just 1.31 microseconds compared to 56.25 microseconds for Intel oneDAL. 
Moreover, while Intel oneDAL shows a maximum latency of nearly 200 microseconds, this 
upper bound can be prohibitive in high-frequency applications such as trading or real-time 
detection systems, where strict latency ceilings are critical. In contrast, Xelera Silva not only 
delivers faster inference but also maintains very stable latency characteristics, with minimal 
variance even at the 99th percentile—making it highly suitable for deterministic, ultra-low-
latency environments. 
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5 Concurrent Inferences 

In this benchmark, 4 models are executed simultaneously on the FPGA accelerator. Each model 
is accessed by the host software via an individual process. The processes are pinned to CPU 
core 1, 2, 3, 4 respectively. These cores have also been isolated. The test is conducted 
1,000,000 times. 
 
The roundtrip latency at the API interface (Toutx – Tinx) is measured when running the 
inference for a small model configuration (Table 10) and a big model configuration (Table 11). 
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Table 10: Small model configuration 

Model Type  LightGBM regression 

Dataset  Synthetic Random 

Number of Features 64 

Number of Trees 200 
Number of Levels 5 

Batch Size 1 

Numerical Features Yes 

Categorical Features  No 

 
 
Table 11: Big model configuration 

Model Type  LightGBM regression 

Dataset  Synthetic Random 

Number of Features 128 

Number of Trees 1000 

Number of Levels 8 

Batch Size 1 

Numerical Features Yes 
Categorical Features  No 

 
 
For each model configuration, the test involves running inference with four models (IDs from 
0 to 3) simultaneously in an asynchronous mode (independent processes accessing the 
models). Each process is pinned to a CPU core (0 to 3). The test is conducted 1,000,000 times. 
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5.1 Results Small Model 

Figure 7Figure 7: Latency statistic multi-model  shows the latency statistics of Xelera Silva when 
running inference with 4 small models at the same time. The graphs show the fraction of 
inference measurements (y-axis) below a specified latency (x-axis) for each of the 4 concurrent 
model inferences. 

 

 

 
Figure 7: Latency statistic multi-model (small) 
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Table 12 Table 12 : Latency statistics small modelcompares the minimum, maximum, median 
(50th percentile) and the 99th percentile latency (microseconds) of the graphs above. 
 

Table 12 : Latency statistics small model (microseconds) 

Model ID Minimum Maximum 50th percentile 99th percentile 

0 1.080 5.040 1.130 1.340 

1 1.100 4.570 1.210 1.450 

2 1.100 4.580 1.200 1.420 

3 1.090 4.650 1.200 1.440 
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5.2 Results Big Model 

Figure 8 shows the latency statistics of Xelera Silva when running inference with 4 big models 
at the same time. The graphs show the fraction of inference measurements (y-axis) below a 
specified latency (x-axis) for each of the 4 concurrent model inferences. 

 

 
Figure 8: Latency statistic multi-model (big) 
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Table 13 compares the minimum, maximum, median (50th percentile) and the 99th percentile 
latency (microseconds) of the graphs above. 

 

Table 13 : Latency statistics big model (microseconds) 

Model ID Minimum Maximum  50th percentile 99th percentile 

0 1.210 4.770 1.260 1.450 

1 1.220 4.700 1.320 1.530 

2 1.240 4.760 1.340 1.560 

3 1.220 4.770 1.320 1.530 
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5.1 Key Findings 

The concurrent inference benchmarks show that Xelera Silva maintains ultra-low and highly 
consistent latency even when running four models simultaneously in an asynchronous, multi-
process setup. For both small and large model configurations, the median latency across all 
models remains below 1.35 microseconds, and the 99th percentile stays under 1.6 
microseconds, demonstrating minimal performance degradation under parallel workloads. 
Notably, when compared to single model execution, where the 99th percentile latency 
was 1.450 µs for the small model and 1.570 µs for the big model, the concurrent inference 
results remain remarkably close: 1.340–1.450 µs for small models and 1.450–1.560 µs for big 
models. This shows that even under fully parallel and asynchronous execution, Xelera Silva 
maintains virtually the same tail latency as in isolated scenarios, highlighting its excellent 
scalability and resource efficiency. Additionally, the maximum observed latencies remain 
well below 5 microseconds, reinforcing the platform’s ability to deliver scalable, deterministic 
performance. These results confirm Xelera Silva’s suitability for real-time, high-frequency 
applications where predictable latency across concurrent inference tasks is critical. 
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6 Summary and Conclusions 

This benchmark report evaluates the performance of the Xelera Silva machine learning 
inference software running on the Blackcore ACE 3100-RZ server equipped with an AMD Alveo 
U50 accelerator card.  
The evaluation encompasses a comprehensive set of tests, including PCIe access latency, data 
transfer performance, inference latency comparison, and concurrent inference scalability. 
 
The results demonstrate that the combined Xelera Silva and Alveo U50 platform delivers 
exceptional performance across all test categories: 

• PCIe Access Latency: Ultra-stable latencies with minimal jitter (only 30 nanoseconds 
between min and max) confirm a highly optimized PCIe topology, critical for consistent 
low-latency operation. 

• Data Transfer Performance: Single and multi-process data transfers maintained sub-
1.3 microsecond 99th percentile latency across all packet sizes tested, demonstrating 
efficient and predictable host-to-accelerator communication. 

• Inference Acceleration: Xelera Silva outperformed Intel oneDAL by up to 44x in median 
inference latency. For large LightGBM models, median latency was reduced from 56.25 
µs (CPU) to just 1.31 µs (FPGA), while significantly narrowing the variance (99th 
percentile remained under 1.6 µs). 

• Concurrent Inference Scalability: Even under four fully parallel inference streams, 
latency remained consistently low and tightly bounded, with virtually no degradation 
compared to single-model execution. This highlights the solution’s excellent scalability 
and suitability for high-throughput, real-time workloads. 

 
Xelera Silva is well-suited for real-time systems with stringent latency and consistency 
requirements, including financial trading, cyber defense, and high-frequency industrial 
applications. Its ability to scale to multiple parallel inferences without impacting tail latency 
further underscores its architectural efficiency and production-readiness for mission-critical 
deployments. 
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